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In studying usefully important problems of flow for multicomponent mixtures for deforma- 
tion of solid materials prepared by the method of powder metallurgy the requirement arises 
of predicting limiting loads for these systems. It is assumed that a composite material con- 
sists of a uniform matrix and a random collection of ellipsoidal inclusions. Calculation 
of the effective plasticity limit for the material and a parameter describing its bulk com- 
pressibility is accomplished by means of a variant of the effective field method suggested 
in [i, 2]. The method is based on the problem of solving binary interaction of inclusions 
in an effective field assuming stress uniformity within each inclusion. An assumption has 
been used for uniformity of the dissipative function within inclusions and the matrix. 

i. In a macrovolume with characteristic function W we consider a mixture of rigidly 
plastic components whose properties are described by a flow surface taking account of bulk 
compressibility: 

I~ + b (x) 1~ = k 2 (x), ( 1 . 1 )  

where 11 = oii is first invariant of stress tensor oii; 12 ~ siisij is second invariant of 
stress deviator sij = oij - os163 The matrix wit~ plasticity limit k(x) = k 0 and param- 
eter b(x) = b 0 characterlzing its bulk compressibility contains a Poisson set X = (V k, x k, 
mk! (k = i, 2, ...) of ellipsoids v k with characteristic function Vk, centers Xk, semiaxes 
k I (ak I > ak2 > a k3), a set of Euler angles ~k, and parameters k k and b k. There is ideal 

adhesion between components so that the field of displacement velocities ui(x) is continu- 
ous. 

For (i.i) a local association rule for flow of components is observed [3-6] 

~ij--61/(x)sn(x) 
~ = k (x) W ~ (~) 8 ~  (~) - d (~) ~z (~) ( 1 . 2 )  

[eij is strain rate tensor, d(x) = (3b(x) - l)/9b(x)]. By multiplying (1.2) in a scalar way 
by eij we obtain a relationship for dissipative function D(x) = oij(x)eij(x), by means of 
which-the expression for the flow rule is simplified: 

k ~ (x) t~-" k ~ (x) d (x) ( 1 . 3 )  

Similarly [5], we shall assume that the dissipative function is uniform within the limits 
of each component a = 0, 1 .... , N, D~ = const, and D~ = vZ<k2smnSmn - k2dss163 here and 
below the following notations are adopted: <(')>a = ~a-lf(.)V~(x)dx, <(')> = W-I/(')W(x)dx 
and <(')Ix2; x1> is the nominal average for an assembly of an ergodic static uniform field 
X(" Ixl) assuming that at points x I and x 2 inclusions are found and x I ~ x2; Va = mesV~; V 0 = 
W~\V-----W\ U V~. Inclusions relate to different phases if they have different (even only 

h=l 
one) parameters a k, ~k, kk, bk" By substituting (1.3) in equilibrium equation oij,j = 0, 
we obtain 

VLoV u = - - V  V (L~ - -  L o ) v u  , ( 1 . 4 )  

where V is operation of a symmetrical gradient, E ~ Vu, and isotropic tensors L 0 and L I with 
x e V a may be written in the form 

Lo - -  (3k ~ 2~ ~ --= 3k~ -i- 2~t~ L~ (x) = (3k~ (x), 2~0 (x)), 

N~ = 61j8~I3, N2 ---= (6ik6sz -I- 6~zSsli -- (213)8is6~.,)12, 

(l.S) 
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3k ~ = k 0 ( t  - -  3do), 2~ ~ = 1,'~, 3k ~ (x) = l.:~ (x)(1 - -  3d,) Do/Dot, 

.~9 ~ (x) = k~Do/D~z (x ~ Va). 

Equation (1.4) with a specified accuracy conforms with similar relationships in the 
linearly elastic mechanics problem for composites [I, 2]. Since nonlinearity effects only 
develop in the dependence of L I on D~, and L0 = const, then problem (1.4) is a special case 
of an elastic physically nonlinear problem [7] and it may be solved as suggested in [I, 2] 
with a variant of the effective field method. In fact, Eq. (1.4) is reduced to an integral 
equation [i, 2] by means of fundamental solution [8]: 

Uij@) = ( 8 ~ ~  -- •176 ~j), x ~ = (3k ~ + ~~176 + 4~~ 

e (x) = <e> @ S G (x - -  y) {[L] e (y) - -  <[L] O}  dy 

(G(x) = VVU(x), [L (k)] = (L1(x k) - L0)V k is a piecewise-constant tensor differing from zero 
only within inclusions, [L] = ~ ([L(k)]); integration is carried out everywhere with respect 

to W. 

We prescribe the structure of the composite by means of binary correlation function 
~(Xk, ~klXi, mi), i.e., probable location of the k-th inclusion in assembly X with fixed 
i-th inclusion. We assume that ~ is centrally symmetrical: 

+@h, o~lxi, oi)  = r 1 6 3  -~ ( 1 . 6 )  

Here fk([Xi - Xkl) = 0 with x k ~ v i' and fk(IXi - Xk[) = n k with x k r vi'; v i' is sphere 
radius aih = max (a{+ a~) with a center at xi; n k is calculated concentration of inclusions 

J 
of component X k c X, i.e., connected with their volume concentration c k = (4/3)~aklak2ak3nk, 

N 

e = ~,ckL ~(mk) is Orientation density distribution for inclusions of component X k. 
h = l  e: 

We fix the inclusion with number i, then by separating from the right-hand part of (1.5) 
the term equal to the local external field E i in which the i-th inclusion is found, by means 
of averaging with respect to ~ (1.6), we find 

~i>  = <~> + ~ G (x - -  y) {<[L (y)] s (y) V (y; x~) I Y; x,> - -  <[L] s>}dy (1.7) 

(V(y; x) = U Vk\V~(x~)~. In order to close (1.7) it is necessary to establish the relationship 
h=l 7 

between ~ and s(xi), and also between g(x i) and ~(y). 

2. We solve problem (1.7) for the case when assembly X consists of one and two inclusions. 
Since according to the assumption L0, L I = const in the matrix and inclusions, then Eq. (1.7) 
with a specified accuracy conforms with the similar relationship of linear elasticity theory 
for composites [i] and for a single inclusion in the prescribed uniform field at infinity 
E ~ ~ L0-1o, the fields for strain rate gi and stresses o i within an inclusion are also uni- 
form: 

s~ (x) = A~e ~ Ai = ( I  @ P i  [L]) -1,  gi = Big ~---- L1A~L~la ( 2 . 1 )  

(x  ~ v i ,  a n d  c o n s t a n t  t e n s o r  P i  ~ - f G ( x  - Y ) V i ( Y ) d y  i s  known [ 8 ] ) .  

Solution of the problem of binary interaction of inclusions in an infinite matrix with 
prescribed uniform field at infinity s0 may be constructed by the method of successive ap- 
proximations. From the equation 

s (x) = ~o + S G (x - -  y) ILl s (y) [V~ (y) + Vj (y)] dy ( 2 . 2 )  

t a k i n g  a c c o u n t  o f  t h e  f i r s t  i t e r a t i o n s  we f i n d  t h e  r e l a t i o n s h i p  r e q u i r e d  w i t h  s o l u t i o n  ( 1 . 7 )  

~(x~ - xj)[L (j) ]~(xj)Vi = C(x~ - -  xi)Rj(~~ § C(z~ - xj)R~a~ ( 2 . 3 )  
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in obtaining which an assumption is made about the point nature of inclusions [i, 2] and the 
uniformity of a field e(x i) within each inclusion; R i = [L(i)]AiVi . 

It is noted that with these assumptions problem (2.2) may be solved by linear algebra 
methods: 

~ i  - -  x i ) ~ j ~ j ) V j  = G ~ i  - -  x j ) ~ i { ( Z - 1 ) j i s ~  ) + (Z-1)j]$~ ( 2 . 4 )  

where ( Z - Z ) i j  i s  a m a t r i x  i n v e r s e  to  m a t r i x  Z wi th  e lements  Zmn (m, n = 1, 2) in  t he  form 
of  a submat r ix  

Zmn = I6mn+G(xm--xn)Rn(l--6mn). ( 2 . 5 )  

In ( 2 . 4 )  and ( 2 . 5 )  ~(x) and e0(x)  v e c t o r s  o f  dimension 6 a r e  p r e s e n t e d  and [L] ,  A, and R by 
m a t r i c e s  6 x 6; t he  r u l e  f o r  c o n v e r t i n g  from a t e n s o r  of  t h e  second and f o u r t h  ranks  t o  vec-  
t o r s  and m a t r i c e s  i s  d e s c r i b e d  in [8 ] .  Thus, i n c l u s i o n  v i i s  in  a un i fo rm f i e l d  depending 
on ge ome t r i c  and mechanica l  p r o p e r t i e s  of  t he  i n c l u s i o n  in  q u e s t i o n .  

3. In  o b t a i n i n g  r e l a t i o n s h i p s  f o r  <~i > from ( 1 . 7 )  we use h y p o t h e s e s  f o r  an e f f e c t i v e  
f i e l d  [1,  2] a c c o r d i n g  to  which f i e l d  e i  i s  un i fo rm in t he  v i c i n i t y  o f  each p o i n t  i n c l u s i o n  
and i t  depends on t h e  p r o p e r t i e s  of  t h i s  i n c l u s i o n ;  each p a i r  o f  i n c l u s i o n s  v i ,  v j  i s  in  i t s  
own e f f e c t i v e  f i e l d  ~ i j  independen t  o f  t he  p r o p e r t i e s  o f  t he  p a i r  being s t u d i e d .  These hy- 
p o t h e s e s  make i t  p o s s i b l e  to  t r a n s f o r m  ( 1 . 7 ) ,  ( 2 . 1 ) ,  and ( 2 . 4 )  to  a s e t  o f  e q u a t i o n s  in r e l a -  
t i o n  <si  > by r e p l a c i n g  s ~  i )  in  ( 2 . 1 )  and ( 2 . 4 )  by <el>: 

N N 

N 
+ E J'a(x - 

(3.1) 

Integrals in (3.1) converge absolutely since Ixi - x[ + ~, (Z-Z)vv + I, and (Z-1)~i + 0. 
Tensors of the second and fourth rank in (3.1) are presented in the form of vectors of dimen- 
sion (6 x i) and matrix (6 • 6). We form from vector <e>T a vector of dimension (6 x I) 
<E> T = (<e> T .... , <e> T) (T is the sign of transposition), and similarly we form <~>T = 
(<el> T ..... <~N>T). Then system (3.1) may be presented in matrix form 

Y<E> = <E), (3.2) 

where elements of the matrix Z = Zij (i, j = 1 ..... N) serve submatrices 

Y~J -- 6i~ ( I - -  ~ G(xi -- x) R~(Z-~)vi nv('l -- V~) dx) 

Turning to matrix Y we find that 

N 

(~> = ~ (Y-')~ <e>. (3.3) 

In order to obtain an analytical expression for <~i > we use, together with accurate solu- 
tion (2.4), iteration approximation (2.3); then (Z-Z)vv = I, (Z-Z)~i = G(x i - x)Rv. This leads 
to the situation that part of integrals in (3.1) disappear and the rest may be calculated 
analytically. In addition, if we adopt the assumption that <si > = <E> = const [i, 2] and 

2 i Vl~ ~ = Vz ~ is a sphere of radius a i , then by averaging (3.1) with respect to ~i and a i we 

obtain 

D~=ii__P(V~)X<Hvnv>__~jjO(x)dx)_l.,e,~ v ( 3 . 4 )  <;>= 

Here J~ = <<G(x i - x)RvG(x i - x)R(l - Vi~ ~ �9 mi~ means averaging with respect to 
~i, ai, ~v, av in a sphere of radius [xi - x I with center x i. Similarly, we find the stress 
concentration tensor D ~ in inclusions of component i which in analytical form are 
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Q, = L o ( I  - -  P,~Lo), "B,~ =- By [M <'0] V,, [M <')1 = { L 7  ~ (x) - -  L :  ~} V , .  
(3.5) 

Tensor J~ in the case when <Rv> (~ = i, ..., N) are isotropic, is also isotropic, and its 
N 

values is given in [i]. Tensors D e D ei ------~ (Y-~)ij in (3.3) characterizing concentration 
' J = l  

o f  s t r a i n  r a t e s  c a u s e d  by s u r r o u n d i n g  i n c l u s i o n s  makes i t  p o s s i b l e  t o  d e t e r m i n e  e f f e c t i v e  c h a r -  
a c t e r i s t i c s  o f  t h e  m a t e r i a l .  For  t h i s  we a v e r a g e  l o c a l  f l o w  r u l e s  f o r  r e p r e s e n t a t i v e  vo lume 

W; in  t e n s o r  fo rm we o b t a i n  D0<o ) = L0<e> + ~ [ L  (0] <e>~. T a k i n g  a c c o u n t  o f  t h e  a s s u m p t i o n  f o r  
i 

u n i f o r m i t y  o f  f i e l d  <~i  > and r e l a t i o n s h i p s  ( 2 . 1 ) ,  ( 3 . 3 ) ,  and ( 3 . 4 )  we f i n d  t h a t  

Do<e > = L* <e>, L* = L o + __.,~ <Bini> D'i; ( 3 . 6 )  
i 

(M* <~I)) <z> = D * / D  o, D* : <zu><~u> (3.7) 

[M* = (L*)-I]. If instead of relationship (3.3) we use (3.4) 
D ei by D e in (3.6). 

4. Until now it has been assumed that Ll(x k) is known, 
these tensors depend through dissipative functions D O and D k 
and strain rates in components. In calculating D O and D k we 
If similar to [3], a hypothesis is taken about the absence of 

, it is necessary to replace 

but according to the suggestion 
on unknown fields for stresses 
make a number of assumptions. 
fluctuations D~ (~ = O, I ..... 

N) not only in component Xa, but also in the whole of volume W, then (3.7) is an explicit 
expression for the flow macrosurface of a composite material, in fact, with D a = D* = const, 
D0/D k = 1 (k = 1 ..... N), and tensor LI, and this also means Rk, De,and M do not depend 
on fields for stresses and strain rates. In the general case L* is anisotropic, but with 
an equally probable orientation of inclusion L* is isotropic and the flow macrosurface for 
the material will be prescribed by an equation similar to (i.i) with effective parameters 

k* (2L~)  1/2, b* = * * ( 4 . 1 )  = 2 L J ( g L 1 )  

[3L1" and 2L2" a r e  i s o t r o p i c  componen t s  f o r  t e n s o r  L* = ( 3 L l *  , 2 L 2 " ) ] .  

We weaken  t h e  a s s u m p t i o n  a b o u t  u n i f o r m i t y  o f  t h e  l o c a l  d i s s i p a t i o n  f u n c t i o n  and we s h a l l  
a s sume  t h a t  D a ( a  = 0, 1, . . . ,  N) i s  o n l y  c o n s t a n t  w i t h i n  t h e  componen t  X~ i n  q u e s t i o n .  S i m i -  
l a r  t o  [5 ,  6] we t a k e  an a p p r o x i m a t i o n  f o r  t h e  d i s s i p a t i v e  f u n c t i o n  D a = r  where  
~a = L(a)D~D0-1, L(a) = L0 with V0(x) = 1 and L (a) = Lx(x~) with x e v~. In view of the 
stress field uniformity within inclusions, we assume approximately that Dk 2 = <(Lke)e> k = 
<LkE>k<S> k (k = i, ..., N) [5, 6], and more accurate relationships may be obtained by means 
of estimating the correlation function stress fields in inclusions by the procedure in [2], 
and for D O from manifest relationships 

<v'ks'> = ok (<s>~ - <~>), (I - ~) <(LOS) S>o = 

---- <Los > <e> + <(Los' ) e'> -- ~ c~ <Loe>~ <e>h 
h 

(4.2) 

(a prime denotes fluctuation f' = f - <f>). Then considering that with transformation of 
the volumetric integral by the first Green equation, the value of surface integral with re- 
spect to 8W referres to mesW tends toward zero with mes W + ~, and by using Eqs. (1.4) and 
(3.6) we obtain 

<(~o0 ~'> = - E ~ <[ L(~)] r (<~>~ - <s>). 
k (4.3) 

In deriving the last equality as in [5], only the first term in expansion (2.3) it is 
considered, and more accurate estimates may be found by the procedure in [2]. Thus, dissipa- 
tive functions only depend on uniform fields <s> and <e>k, and this means that they may be 
expressed by means of relationships (2.1), (3.4), (4.2), and (4.3) in terms of <e>: 

D~ = (Z~AJ <~>) ( A J  <,>), 
DX = (i -- c)-' [(L* <e>) <s> -- ~,,~ ch (<L'~)A~D ') <e>) (<A~D~> <e>)}. (4.~) 
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Since in Eqs. (2.1) and (3.4) A k and D e depend on dissipative functions D o and Dk, then in 
the general case D o and D k may be obtained by the method of successive approximations. In 
fact, in the zero iteration D~ = D = const V ~, then zero approximations A k and D e do not 
depend on D a and the first approximation for D= may be found by Eq. (4.4); then by (1.5), 
(2.1), and (3.4) we calculate the first approximation of Lk, Ak, and D e , move to (4.4), etc. 

5. We consider important cases in practice when it is possible to plot L* in explicit 
form. Here we refer to materials with absolutely rigid inclusions and pores when D k = 0 
(k = i ..... N) and L1(x k) do not depend on dissipation functions D a (~ = 0, l .... , N). 
For equiprobable oriented inclusions, components of isotropic tensor Jij = (3Jij I, 2Jij 2) 
are known [i]: 

3]i~ = 2 (3ki) (2~j) ~ l r  I -s ,  

2 [(3%) 2J~j = ~ + (2~i) (2~j) (77 ~ + 2 ~  --  u~/4)l I r I- ' ,  

= (3k 0 + 4~0) -1, ~ = (3~0) -1, ~ = (3k 0 + ~~176176 + 4~~ -~, 
3 

(3ki, 2 ~ i ) =  I I  a~ ~ Ai[L(~ 
n~l  

Let spherical pores of uniform size be placed in a plastically incompressible matrix. Then 
L 0 = (~, k02), D ~ = ([i - (29/24)c] -I, [i - (35/24)c]-i), J(r) = (5/3, ll/3)a6/Irl -~, and 
values of D ~ for plane spheroidal pores may be obtained similar to [9]. Tensors A and R 
do not depend on dissipation functions, which makes it possible to find 

L* = k] (2/c-- 29/i2, [l - -  (35/24) c] [i + (5/24) c]-*), D* = (i - -  c) D o 

and effective parameters for the material 

(k*) 2 = k~ (l - -  c) (l - -  (35/24) c) (l + (5/24) @-1, 

b* = c(i - -  (35/24)c)[6 0 + (5/24)@(1 - -  (29/24)c)1-L 
(5.1) 

It is noted that similar estimates 

(k*) 2 = k~ (i - -  c) (1 + (2/3) c)-*~ b* = c/6 (l + (2/3) c)-i,~ ( 5 . 2 )  

f o u n d  u s i n g  t h e  h y p o t h e s i s  o f  " s t r o n g  i s o t r o p y "  [3] h a v e  a d i f f e r e n c e  o f  t h e  f i r s t  o r d e r  
o f  s m a l l n e s s  w i t h  r e s p e c t  t o  c f rom ( 5 . 1 ) .  Curves  4 and 5 i n  F i g .  1 were  c a l c u l a t e d  by Eqs .  
( 5 . 2 )  and ( 5 . 1 ) ,  r e s p e c t i v e l y .  In  F i g .  2 a r e  e x p e r i m e n t a l  d a t a  [10] ( p o i n t s )  f o r  t h e  d e n s i t y  
of sintered electrolytic nickel subjected to uniaxial compression in a mold (k 0 = 1.14 MPa). 
From the associated flow rule relating (i.i) with effective parameters (5.2) and (5.1), 
curves 1 and 2 in Fig. 2 are calculated for the dependence of pressure p within this mold 
on c asymptotically close with small c and differing by 30% for p with c - 0.40. More accu- 
rate curve 2 will shift to the left on axis p the more ellipsoidal inclusions differ from 
spheroidal inclusions adopted in calculations of (5.1). 

We consider the opposite case when with quite low stresses <o> inclusions behave as 
rigid particles. The latter start to deform on reaching critical stresses. For undeformed 
inclusions in a plastically incompressible matrix k~ = ~, b 0 = 0, 
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L* = (0, k~ [t + (5/2) c {t - -  (3i/t6) c} -~] ); 

(k*) 2 = k~ (i - -  c) [ i  + (5/2) c {t - -  (3t/16) c}-1]. ( 5 . 3 )  

In  F ig .  1, c u r v e s  1-3 were  c a l c u l a t e d  by Eqs.  ( 5 . 3 )  f rom [5] and [ 3 ] ,  r e s p e c t i v e l y .  
In  c a s e s  ( 5 . 1 )  and ( 5 . 3 )  t h e  r e l a t i v e  change  in  e f f e c t i v e  p a r a m e t e r s  L*/L 0 c o r r e l a t e s  w i t h  
t h e  r e l a t i v e  change  in  e f f e c t i v e  e l a s t i c i t y  modu l i  [1 ,  2] where  a l s o  p r o v i d e d  i s  a compar i son  
o f  e x p e r i m e n t a l  d a t a  f o r  r e l a t i v e  v i s c o s i t y  o f  Newtonian  s u s p e n s i o n s  w i t h  c a l c u l a t i o n s  by 
d i f f e r e n t  me thods .  I t  i s  shown t h a t  u s e  o f  t h e  e f f e c t i v e - f i e l d  method s u g g e s t e d  [1,  2] makes 
i t  p o s s i b l e  w i t h  c > 0 .4  t o  r e f i n e  m a r k e d l y  (by  a f a c t o r  o f  two) t h e  c a l c u l a t e d  s h e a r  modu- 
l u s  compared  w i t h  o t h e r  me thods ,  which  a g r e e s  w i t h  t h e  e x p e r i m e n t .  The v a l u e s  o f  s t r e s s  
c o n c e n t r a t i o n  t e n s o r  D ~ = (1 + ( 9 / 1 6 ) c )  -z o b t a i n e d  make i t  p o s s i b l e  t o  f i n d  t h e  c r i t i c a l  
value of macrostresses <a> at which stress inclusions reach the plasticity limit: 

(25/4) (i + (9/56)c) -~ I~ + dlI~ 2 = k~. 

After reaching a critical stress determined by invariants Ii* and I2", the rheological model 
is described by general relationships (3.4)-(3.6), taking account of inclusion plasticity. 

Thus, the effective field method suggested makes it possible to take account of stress- 
field inhomogeneity in the matrix and binary interaction of inclusions, and it leads to re- 
finement of calculated effective parameters of composite material plasticity in the example 
considered. 
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